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We apply a generalized approach for model-based nonfeedback control to chaotic systems where
parametric dependence on the control forces is included. The existing formalism is extended for our
purpose. For chaotic iterated maps and ordinary differential equations, we obtain entrainment to
stationary, periodic, and aperiodic goal dynamics. Applicability to general resonance spectroscopy

is demonstrated.
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I. INTRODUCTION

Recently, much attention has been paid to methods
that intend control of chaotic systems. The aims of con-
trol include the elimination of turbulencelike, only short-
term predictable behavior in cases where it occurs over
a large parameter range (e.g., certain chemical reactions,
mechanical vibrations, or fluid flows), easy switching be-
tween different solutions embedded in chaotic attractors,
and enhancing chaos for several purposes (e.g., dissipa-
tion, mixing, or improved system modeling). The pro-
posed methods comprise feedback and nonfeedback tech-
niques. This article addresses the extension of the non-
feedback method known as entrainment control to para-
metric control forces.

A large number of feedback control methods for ap-
plication to chaotic systems has been introduced so far.
They include stochastic control techniques [1], repeated
shifts of the system onto stable manifolds of unstable
periodic orbits [2—7], switching or proportional feedback
control that is applied occasionally [8-13] or continuously
[14-16], and proportional-plus-integral control [17-19].
Also, targeting controls including feedback [20-22] have
been proposed, and several feedback techniques for spa-
tially extended systems are under consideration [23-26].
Typically, systems that are controlled with one of the
above feedback methods settle down on or near an un-
stable periodic orbit of the (uncontrolled) chaotic system.
Therefore in most cases the control forces are small, while
the variety of goal dynamics achieved in this way is re-
stricted. In particular, this holds for all adaptive para-
metric controls introduced so far [27-29] where only nat-
ural and stable system dynamics is permitted as a goal.
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For many feedback techniques, such as the Ott-Grebogi-
Yorke (OGY) method [2], no detailed model of the sys-
tem under control is necessary, though performance can
be improved if a global model exists [5].

Nonfeedback control aims at, e.g., applications where
none, no real-time, or only highly restricted measure-
ments of the system state are available (e.g., molecule
dynamics, certain chemical or biological processes), or
where the system behavior is to be altered more drasti-
cally. Many publications concern periodic perturbations
of nonlinear [30,31] and chaotic systems [32-42]. These
works have shown a variety of cases where chaotic motion
has been suppressed by periodic perturbations either in
parameters or in phase space. Usually, no global model is
used to derive exact shapes of control signals (except for
derivation of resonant frequencies), and for small control
power, the resulting dynamics is close to unstable peri-
odic orbits (similar to most feedback applications).

In contrast to the above perturbation controls, there
exist explicitly model-based approaches of open-loop con-
trol, first introduced by Hiibler and Liischer [43]. Con-
trol forces of this method are completely derived with
the help of a global model of the experimental dynam-
ics and a desired goal behavior, to which the system
is entrained (“entrainment control”). Further investiga-
tions and applications of such controls to chaotic iterated
maps [45,49] and ordinary differential equations (ODEs)
[44,46-48] show the use for the removal of chaos, but
also for other goals (e.g., aperiodic orbits or the transfer
between different attractors). The idea of model-based
control has also been investigated for reconstructed sys-
tems and systems with hidden variables [50,51], noisy
systems [52], and partial differential equations [53,54].
In the latter article it is shown that this kind of control
also works with low energy cost for goals near the natu-
ral system behavior (while more unnatural goal motion,
though possible, requires possibly large control forces).
The problem of the need for an accurate model equation
is addressed in Ref. [55], where the dependence of con-
trol performance on modeling parameters is exploited for
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a general kind of resonance spectroscopy.

All the cited work about model-based entrainment con-
trol considers control forces that act additively in phase
space. Although the idea of entrainment control via para-
metric forces has already been stated in Ref. [44], only
one work is known to the authors where nonadditive
forces really have been used. In Ref. [56], Shermer and
Spano employ a model-based derivation of a parametric
force to entrain a nonlinear (Duffing-like) oscillator to
harmonic motion, both in simulations and experiment.
While they obtain excellent results controlling a passive
system, the demonstration of the applicability of para-
metric entrainment control to chaotic dynamics is still
lacking.

In this article, we extend the existing theory of en-
trainment control for the control of chaotic systems on
the basis of general control forces. This includes con-
siderations on stability and inaccurate modeling. Using
our results, we show nonadditive entrainment control for
chaotic iterated maps and ODEs as well as the applica-
bility to general resonance spectroscopy as described in
Ref. [55].

In Sec. IT we review the main idea of the model-based
control method with general forces, as proposed in [44],
[66], and add stability considerations necessary for the
application to chaotic systems and for general resonance
spectroscopy. Examples for parametric control of iter-
ated maps are given in Sec. III; fixed point, periodic,
and aperiodic dynamics have been achieved in the one-
and two-dimensional cases. Applications of the control
method to ODEs are addressed in Sec. IV. Periodic en-
trainment of the Lorenz system and control of a chem-
ical oscillator model, using restricted control forces, are
described. Section V gives a summary and an outlook
for further applications and improvements of the control
technique.

II. THEORY

The notation in this section corresponds to the dynam-
ics of an iterated map. The generalization to continuous
time systems is straightforward and given in Sec. IV.

We assume that the experimental system we want to
control can be described by the iterated map

x(n+1) — f(x™,p, F™) | (1)

where x(") € IR? denotes the state of the d-dimensional
system at time step n, p € IR* a set of k parameters,
and F(® ¢ IR® the control forces at time n. We assume
further that we have a global model of the experiment,

y™ ) = f(y™, q,F™) | (2)

with y(™ € R?, q € IR*, which has been either derived
analytically, or reconstructed from data. Note that the
difference between experiment and model is expressed in
different parameter vectors, p and q, respectively. This
can always be achieved by a series expansion of both the
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experimental and the model equations (if both maps are
analytic) and adding the expansion coefficients to the pa-
rameter vectors (to prevent infinite dimensions, we con-
sider a reasonable truncation of these vectors to finite
dimension k). Now we introduce a goal dynamics, i.e., a
motion that we want the experiment to do:

z(n+1) — g(z(n))’ (3)

with the goal states z(™ € IR?. At this point, there is a
priori no restriction of our goal. However, stability and
other requirements of the control may limit the number
of goals that are possible.

To achieve the desired dynamics in our experimental
system, we have to choose the control forces F(™) in such
a manner that

x(»+1) — f(x("),p,F(")) = g(x(")). (4)

However, this would require a measurement of x(™) at
each time step to evaluate f and g correctly. We can
avoid the necessity of feedback if we assume that the
system has reached some known state of the goal, say
z(®) and that control works perfectly. Then all further
points x(® = z(") are determined by g and z(%®), and we
can calculate the control forces without any information
from the actual system, using

f(z™,p, F™) = g(z™) = 2"V, (5)

The important question arises of whether the controlled
system shows entrainment,
lim |x™ — 2| =0, (6)
n— 00
when it starts apart from the goal. We will come back to
this later.

Our considerations contain one more step. Because we
have no access to the “real” experimental equation, we
solve our model map (with parameters q) to gain the
control signals:

f(z("),q’ F(n)) = g(z(n)) = g(m+1) (7)

In this way, the possibility of control usually deteriorates,
but does not break down immediately. Although the ex-
act goal dynamics is no longer a solution of the controlled
equation (1) if p # q, the system can be entrained to a
similar dynamics for sufficiently good approximations of
the true parameters. Control can still be successful, but
in a looser sense than given by Eq. (6). To character-
ize the quality of control if no real convergence towards
the goal occurs, one can introduce some measure of sim-
ilarity, e.g., the limit in Eq. (6) can be replaced by a
supremum or a mean over a long time which should be
smaller than some finite e. In the following, we extend
“entrainment” in the sense that the controlled system fol-
lows the goal dynamics within an averaged distance that
is small compared to the phase space extension covered
by the uncontrolled orbit:

(Ix$h = 2™ < ¢ < max{[|x{on — XTokonll}-  (8)
m,n

con



51 PARAMETRIC ENTRAINMENT CONTROL OF CHAOTIC SYSTEMS

If such “near entrainment” [46] is shown by a controlled
system, it can be exploited to improve initial parameter
guesses by a “trial and error” control method. This is
the main idea of general resonance spectroscopy as pro-
posed in Ref. [55]: Model parameters are changed until
the control works “best,” e.g., the boundary € in Eq. (8)
is as small as possible.

For consideration of stability and systematic deviation
(near entrainment) of our goal dynamics, we are inter-
ested in the difference between the experimental state
and the desired goal state. For small distances to the
goal, and for small modeling errors, the following lin-
earization of Eq. (1) is valid:

X+ = £(z(), q FM) 4 D) (x() _ 5()
+Df{™(p — q). (9)

The two Jacobi matrices are evaluated at the (known)
points z(™ | q, and F(™):

af;
(n) — [ 22
b= <3Zj>

n afl
o7 = (5,)

ij=1,...,d, (10)

?
z(n),q,F(m)

z(n) ,q,F(m)
(11)

Using Eq. (7), the control forces F(®) are chosen in such
a way that

XD g +1) = D) (x() _ 5™) 1 D (p — q).
(12)

Let us briefly review the case of additive control forces
in each variable,

x( ) = £(x() p, F™) = f(x(™ p) + F(®).  (13)
Solving Eq. (7) immediately leads to
F™) = z*+D _ (2™ q). (14)

Jackson [46] defines the convergent regions in phase space
by the condition that all nearby orbits converge towards
each other. A point z belongs to a convergent region if
all eigenvalues of the Jacobi matrix

;. af;
sz— (823')

have an absolute value less than unity. All goals en-
tirely located within convergent regions turn out to be
asymptotically stable. However, statements about size
and location of their basins of attraction are more diffi-
cult to make (refer to Refs. [45,46,49] for some examples).
The situation is slightly different for ODE dynamics (see
Sec. IV).

The convergent regions in the additive control case are
obviously independent of F and therefore of the specific

, di=1,...,d (15)

z,q
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goal that is to be achieved. This is, however, not the
situation for general control forces. If the influence of
the control is not additive, convergent regions depend on
the applied forces, i.e., the eigenvalues of D fz(") at z(™
depend on the next desired goal point, z(®*1) (which is
a priori arbitrary). Therefore determination of stable
goals becomes a more difficult task. However, we can
determine convergent regions for fixed point control,

2"t = z(") — g%, (186)

Then, control forces F* are constant in time, depending
only on z*, and eigenvalues of

* af’z
bfs = (321')

can be calculated. The locations in phase space where
all eigenvalues of Df} have an absolute value less than
unity (i.e., where controlled fixed points are asymptoti-
cally stable) are called FP-convergent regions in the fol-
lowing. They are not independent of the way control
forces act on the system, as forces are involved in the Ja-
cobian (17). The (usual) convergent regions are recovered
as the special case of FP-convergent regions for additive
forces. These regions are not very useful, however, in the
case of nonadditive control, because convergent regions
and FP-convergent regions may differ significantly.

One can expect that also nonstationary goals can be es-
tablished within FP-convergent regions if their dynamics
is suitably limited. In the case of iterated map dynam-
ics, a sufficient condition is the choice of consecutive goal
points z(™ and z(**1) in such a way that the absolute
eigenvalues of (10) remain smaller than unity (e.g., the
difference z(®*1) — z(") can be kept sufficiently small). If
a periodic goal of period N is considered, the eigenvalues
of the product of Jacobians along the goal orbit

N-1 . N-—-1 8f1
11 277 =11 (‘923')

n=0 n=0

, t,73=1,...,d (17)
z*,q,F*

(18)

z(n) ,q,F(?)

should have an absolute value smaller than unity to en-
sure stability.

Dynamic goals need not be restricted to FP-convergent
regions, as the areas where nearby orbits converge are
altered by the applied forces (which depend on the dy-
namics of the goal) and thus are dynamic themselves.
However, for “slowing down” the goals, i.e., reducing the
distances z("*1 — z(®) more and more, they converge to
the (stationary) FP-convergent regions. A calculation of
FP-convergent regions is therefore also helpful to esti-
mate the areas where parametric entrainment control is
applicable for dynamic goals. This is used in some of the
examples.

While a detailed investigation of the problem of sta-
bility and also of the extensions of basins might prove
to be even more involved than in the special case of ad-
ditive forces (see Refs. [45,46,49]), dynamic convergent
regions might also exhibit new possibilities for entrain-
ment control. This should be addressed in a subsequent
investigation.
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To include a modeling error in our considerations, we
permit a nonvanishing second term on the right hand
side of Eq. (12). This leads to a systematic deviation
of the actual dynamics from the desired one. However,
if |p — q| is small enough, the parameter error does not
change the eigenvalues of the Jacobians too much, and
we do not expect a great effect on stability of our (now
shifted) goal. The systematic shift can be used to apply
the above mentioned general resonance spectroscopy to
the experimental system [55].

Returning to Eq. (7), different cases of solvability may
occur in general. In the following we suppose that unique
solutions of this set of d nonlinear equations exist. Other
cases (none or nonunique solutions) are briefly discussed
in Sec. V.

A simplification arises if the control acts in such a way
that all partial derivatives of the map with respect to the
forces vanish except for first order, i.e., Blfi/aF]l- =0,l>
2. Then we can linearize

f(z™,q,F™) = £(z(™,q,0) + DFVFM  (19)

with the help of the Jacobi matrix evaluated at zero con-
trol forces:

my _ (Of:
bl = <3Fj)
(20)

If the Jacobi matrix is invertible, we can solve Eq. (7)
directly for the control forces

Fo) _ [ngo]*l [g(zm)) _f(z<">,q,o)], (21)

The form of this equation resembles the case of addi-
tive forces (compare Ref. [43]) except for the multiplica-
tion with the inverse Jacobian. Note that the Jacobian
changes each time step, and that complications occur if
no inverse exists, especially if d # s (see Sec. V).

In the general situation where higher order derivatives
with respect to the control forces appear, the lineariza-
tion Eq. (19) can be considered as the first step of a New-
ton iteration scheme to solve Eq. (7). It might be nec-
essary to proceed with the iteration to gain sufficiently
exact control.

z("),q,0

III. ITERATED MAP DYNAMICS

As a first, quite simple example we consider the para-
metrically controlled logistic map

2D = A+ FO)z™ (1 —2™) 2z e 0,1],) € [0,4].

(22)
The control, added to the multiplicative parameter, acts
linearly [i.e., the linearization (19) is exact], but is not
additive. Equation (22) should be the “experimental”

system, and our “model” equation differs only by the
parameter, called A instead of A:

y D = (A FM)y™ (1 - y™). (23)
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Equations (7) and (12) yield the control forces
F™) = 241 /1) (1 = ()] - X (24)
and the linearization
() _ ) — (X 4 FM) (1 — 2200 (2™ — 2(7)
+2™ (1 - 2M)(A = X), (25)
respectively. The (one-dimensional) Jacobi matrix reads

4

= A+ FM™)(1 -2z

dz 2(n) X, F(rn) ( ! )
(n+1)(1 — 92(n)

_ 22 ) (26)
z(n)(l — z(n))

Here the control force F(™) could be substituted by its
analytical expression which leads to the occurrence of
both z(™ and 2("*1), If we consider a fixed point z* to
be stabilized [Eq. (16)], we find that every fixed point
in the interval [0, 2] is a stable goal. It turns out that
the fixed point control force simply tunes the parameter
to a value where the stable fixed point is the natural
dynamics of the logistic map. Indeed, this is only possible
for points within the above interval, corresponding to
controlled parameter values (A + F) € [1,3]. Although
the fixed point control is trivial, the control of a dynamic
goal is not, since it does mot simply consist of chained
fixed point controls.

From Eqgs. (24) and (25), we calculate a systematic
displacement of a controlled fixed point z(°°) which de-
pends on the deviation of our model parameter from the
experimental value, according to

2 — 2* = (1—2*)2(\ = X). (27)

The displacement can be used for an accurate determina-
tion of the system parameter A (compare Ref. [55]). For
a chaotic logistic map (A = 3.8) which is driven to a fixed
point z* = 0.5, we show, in Fig. 1, the mean distance of
experiment and goal,

0.06 T T T T T T
0.05 K\
vo4 - N /_
0.03 \\\ -
AN
0.02 F N J
0.01 [ -
O L 1 1 1 1 1
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
A=A

FIG. 1. Mean distance A of experimental fixed point and
goal fixed point for a parametrically controlled logistic map
(dots). A — X gives the distance between experimental and
model parameters. The theoretical linear dependence is given
by the solid line.
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A = (Jz™ — M), (28)
which is plotted vs detuning of experiment and model
parameter. The theoretical values according to Eq. (27),
valid for small A — X, are given by the solid line. The
parameter of the experiment can be determined with high
precision by tracking the matching of the controlled and
the actually desired fixed point.

The most conservative stability estimation for a dy-
namic goal, considering a goal dynamics of points jump-
ing arbitrarily within the unit interval, leads to stable
goals within the interval [(3 — v/5)/2,(v/5 — 1)/2]. To
demonstrate that the goal trajectory indeed may be ar-
bitrary within this region, Fig. 2 shows the control of a

(a)

(c)

(a)

_2.5 1 1 1 1 1
200 300 400 500 600 700 800
n

FIG. 2. Parametric control of the logistic map Eq. (22),
A = 3.9, A = 3.8. The abscissa denotes the iteration num-
ber n. Control for a period-3 goal is turned on at n = 300,
switched to an aperiodic goal at n = 500, and turned off at
n = 700. (a) Orbit (™ of the controlled system. The long
bars at the ordinate indicate the estimated region of stable
entrainment for arbitrary control. (b) Goal dynamics 2(™.
(c) Deviation z(™ — z(™ of system from goal dynamics. (d)
Control force F(™,
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chaotic logistic map which leads first to a period-three
goal and second to another chaotic goal trajectory, re-
stricted to the stable interval. The model parameter is
chosen slightly different than the experiment’s parame-
ter (A = 3.9, A = 3.8), which leads to small systematic
displacement of system and goal dynamics. However,
this does not hinder the emergence of the goal, although
the near-entrained dynamics is shifted slightly across the
upper interval boundary. Note that the system, when
controlled, is no longer “chaotic” in the sense of sensitive
dependence on initial conditions (positive Lyapunov ex-
ponent), but is entrained to one specific aperiodic orbit
(that has been generated before by another chaotic logis-
tic map, suitably transformed to be located within the
stable interval).

The next example considers higher dimension as well as
a more complicated influence of the control. It is carried
out for the Hénon map. The experimental system is the
following:

" = e 42l — (a+ F7) V),
(29)
2 = b+ F)2™ + F™.

We have two forces to control the two-dimensional sys-
tem, but both forces influence both variables. Addition-
ally, the influence of F3 is nonlinear. Here, this leads
to the need for numerical calculation of the forces by
solving Eq. (7). This has been done by a Newton iter-
ation scheme. Our “model” of the system differs in the
values of the parameters, @ and b instead of a and b;
we set a = 1.4, b = 0.3 and @ = 1.45, b = 0.25. The
regions where stable fixed point control is possible (the
FP-convergent regions) have been calculated using the
eigenvalues of the matrix (17), and are given as gray
areas in Fig. 3 (note the difference to the convergent
region for additive forces, given in Ref. [49]). The un-
perturbed Hénon attractor (i.e., a = 1.4, b = 0.3, and

F™ = 0 = F{™) is also plotted as an orientation in

X1

FIG. 3. Phase plane of the Hénon system Eq. (29). The
uncontrolled attractor for a = 1.4, b = 0.3 is visible as well as
an aperiodic goal attractor, forming the dark rectangle. The
gray areas indicate the FP-convergent regions.
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the variable plane. Our goals are chosen to lie (mainly)
within the indicated FP-convergent regions. Figure 4
shows applied control to the above Hénon map Eq. (29).
Fixed point, period-three, and aperiodic (“chaotic”) dy-
namics are achieved in the given example. The deviation
of the experiment from the goal is measured with the
norm § = /(z1 — 21)% + (z2 — 22)2. Because of slightly
“wrong” model parameters, we again see a systematic
shift of the goal dynamics. However, for identical pa-
rameter values of experiment and model, the deviation
would approach zero. The location of the “chaotic” goal
attractor in the z;-z2 plane is also given in Fig. 3 (the
darker “fuzzy” rectangle). It corresponds to the dynam-
ics of two uncoupled chaotic logistic maps, one in each
coordinate. Note that this goal has also small parts lying
outside the FP-convergent regions.

(a) o

(b)

-0.6 | . .
1 1 I - 1 1 1 1

200 300 400 500 600 700 800 900 1000
n

FIG. 4. Parametric control of the Hénon system Eq. (29),
a=1.4,b=0.3,a=1.45, b = 0.25. The abscissa denotes the
iteration number n. Control for a period-1 goal is turned on
at n = 300, switched to a period-3 goal at n = 500, switched
again to the aperiodic goal shown in Fig. 3 at n = 700, and
turned off at n = 900. (a) Orbit of the second system variable
z{™. (b) Second goal variable z{™. (c) Deviation & between
system and goal (see text). (d) Second control force Fé").
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IV. ORDINARY DIFFERENTIAL EQUATIONS

The expansion of the control technique to continu-
ous systems (ODEs) instead of difference equations is
straightforward: just replace x(™) and z(™ by x(t) and
z(t), x"*1) and z(*+1) by x(t) and z(t), and F(® by
F(t), where dots denote time derivatives. The replace-
ments lead to the continuous analog of Eq. (7):

£(2(t),q, F(?)) = &(z(t)) = 2(t). (30)

Equation (12) turns into

x(t) — 2(t) = Df:(t) [x(¢) — z(t)] + Df(t)(p — ). (31)

The FP-convergent criterion changes to negative real
parts of the eigenvalues of the Jacobian Df} [Eq. (17)],
evaluated at points z* and forces F* according to

f(z*,q,F*) = 0. (32)

Fixed point goals are asymptotically stable in the FP-
convergent regions, but statements about stability of dy-
namic goals are more difficult to make than in the discrete
dynamics case: Even for additive control, dynamic goals,
albeit entirely located within convergent regions, need
not be stable if they are not suitably dynamically limited
(i-e., they do not change “too rapidly” [48]). Usually, for
individual goals a stability analysis has to be carried out,
employing well known but lengthy techniques (like Flo-
quet theory for periodic goals). Again, FP-convergent
regions give us a useful hint about where to try entrain-
ment control with dynamic goals, but a general state-
ment about arbitrary goals is obviously not possible. As
a rough estimate, the goal trajectory z(t) should not be-
have faster than a typical relaxation to a fixed point goal
within the considered FP-convergent region:

max; ||z (¢)]|
maxy, ¢, ||2(t1) — z(t2)||

<max(a(t).  (39)

fiy(2(t)) denotes the largest (negative) real part of the
eigenvalues of matrix (17) at z* = z(t). However, this
estimate, based on local convergence all along the goal
trajectory, might prove to be too conservative, since it is
known that stable nonstationary solutions can pass re-
gions without local convergence (e.g., the limit cycle of
the van der Pol equation). Thus we consider the mean
local convergence along a periodic goal trajectory as an-
other estimate for stability:

T
i = (i (a0, 50)) = 1, [ e (a(0). 50t (30

where T denotes the period of the goal. Note that here,
in contrast to Eq. (33), the largest real part of the eigen-
values of the Jacobian Df,(t) with correct forces F(t)
[according to Eq. (30)] is used, denoted by j,. This
quantity depends on z(t) and can be positive. A neg-
ative mean fi,., however, should point to stability of the
goal.

As a first example of a differential equation, we con-
sider the Lorenz system [58], which is parametrically con-
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trolled:
z1 = (0 + F1)(z2 — 71),
zo = (r + F2)x1 — x5 — 7123, (35)
3 = 122 — (b + F3)zs.

Because the control forces act on multiplicative parame-
ters, control is linear in this case and Eq. (21), changed
to the continuous analog, is valid. Correct forces can
be determined analytically for each given goal location
(21, 22, 23) and derivative (21, 22, 23):

F1 = “1 — 0,
22 — 21
Pp=2tntazn (36)
21
= 3tmzn
23

One notes that divergent forces appear if the goal crosses
one of the planes ; = z2, £; = 0, or 3 = 0. Also, the
goals [as all solutions of Eq. (35)] are degenerate in the
sense that the plane-mirrored trajectory z;(t) — —z1(¢),
z2(t) = —=z2(t), z3(t) — z3(t) is also valid. Therefore
nonsymmetric goals may show up in their reflected vari-
ant, depending on the system state when control starts.
Additionally it turns out, when calculating the eigenval-
ues of the Jacobian D f} for the search of FP-convergent
regions, that each controlled fixed point possesses an in-
different direction in phase space with zero eigenvalue.
This corresponds to a further degeneracy of controlled
fixed points: In the case of perfectly matching model
parameters, there exists a one-dimensional set of other
fixed points in phase space with identical control forces.
This happens because F; is always set to —o, irrespec-
tive of the fixed point coordinates, which leads to a non-
uniqueness of controlled fixed points. However, this kind
of degeneracy is removed if the model parameters dif-
fer from the exact values, and also in the case of non-
stationary goals (z # 0). A calculation of “semi-FP-
convergent” regions (permitting eigenvalues to have zero
real part) as a hint for regions of stable goals therefore
seems to be justified. In a plane of constant third coordi-
nate (z3 = 25.0), Fig. 5 shows the region where controlled
fixed points are stable in the sense that besides the zero
eigenvalue the other two have negative real part (gray
area).

As a periodic goal, we choose a harmonic oscilla-
tion located within the indicated plane and the semi-
FP-convergent region: z;(t) = 4cos(wt) + 10, 22(t) =
—12sin(wt) + 12, 23 = 25. To estimate a frequency w
suitable for stability of our goal, obviously our first ap-
proach, Eq. (33), cannot be employed, since the largest
eigenvalue for fixed point control is always zero. How-
ever, a calculation following Eq. (34) results in negative
means fi,(w) in the frequency range w € (0,17]. A min-
imum of i, appears at w =~ 4. The Lorenz system can
indeed successfully be controlled to the harmonic goal
with w = 3.0, as is shown by the trajectory plotted in
Fig. 5 (projected onto the plane 3 = 25.0). The actual
desired goal trajectory is given by the dashed ellipse in
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FIG. 5. Projection of the Lorenz system Eq. (35) onto the
plane z3 = 25.0. Semi-FP-convergent regions (see text) are
indicated by the gray area. The chaotic Lorenz attractor
(0 = 9.8, » = 27.0, b = 2.7) is driven by control to a peri-
odic movement near the goal (dashed ellipse) which is located
within this plane (zs = 25.0). The trajectory corresponds to
Fig. 6.

the first quadrant. The system parameters of o = 9.8,
r = 27.0, and b = 2.7 were slightly different from the
model parameters &§ = 10.0, 7 = 28.0, and b = 2.6666
that were used to calculate forces. Obviously, the peri-
odic solution on which the system is trapped shows only
a small distortion from the actual goal limit cycle (also
in the z3 direction, which is not visible here). Time plots
of the second coordinates of system and goal, z2(t) and
z2(t), and the first control force F(t) are given in Fig. 6.
Control is switched on at ¢ = 30.0 and turned off again at

= 65.0. After a short transient, the system entrains to
the periodic goal, which is left immediately after control.

The control force F;, which in the ideal case becomes
singular [for isolated times z;(t) = 2(t)], has been lim-
ited by a restriction to the interval [—15, —2]. Obviously,
neither the sudden jump of the force nor its truncation
at finite values results in a loss of control in the example.
Strictly speaking, however, the ezact goal trajectory can
no longer be a solution of the controlled equation, even
for exact modeling parameters. Therefore near entrain-
ment actually takes place.

We examined the total frequency range of negative
ir(w) (for control signals calculated with the true pa-
rameters). This revealed that the Lorenz system could be
near entrained for goal frequencies in the approximate in-
terval w € [2,6], which is close to the minimum at w ~ 4.
In the remaining area, entrainment to a periodic solu-
tion also took place, but the distances to the desired goal
became more significant (“far entrainment”), and addi-
tional effects such as period doubling and transient beat
oscillations appear. These phenomena seem to be due to
the extension of nonattracting parts of the goal for larger
fir, combined with the at times (almost) singular con-
trol forces. (Because the chaotic system becomes regular
apart from the goal trajectory in these cases, one rec-
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FIG. 6. The same control as used in Fig. 5. The abscissa
denotes the dimensionless time ¢. Control is turned on at
t = 30.0 and turned off at ¢ = 65.0. (a) Second system vari-
able z2(t). (b) Second goal variable z2(t). (c) Control force
Fy(t). The spikes correspond to divergences which are trun-
cated suitably.

ognizes similarities to the suppression of chaos by other
periodic perturbation methods without any goal [32-42].)

Larger distortions appear also for goals reaching
slightly outside the FP-convergent area and for larger dif-
ferences of system and model parameters. As expected,
we also find entrainment to mirrored goals, depending on
initial conditions. Let us note that entrainment to aperi-
odic goals (which is not shown here) works, too, suppos-
ing the goal dynamics is sufficiently slow and takes place
mainly in FP-convergent regions.

In the following, we briefly want to demonstrate the
spectroscopic method described above [55], using para-
metric control of an ODE. We take a three-dimensional
system that is known in the literature as the three-
variable autocatalator (TVA). It models a chemical reac-
tion of a precursor reactant to a final product via three
intermediate species. For certain parameter choices, the
equations exhibit period doubling and chaotic behavior
[57]. In our spectroscopic approach, we introduce three
control forces for open-loop control: One force changes
the concentration of the precursor species (affecting the
variable p), and two other controls add to the time
derivatives of the concentrations of the intermediate re-
actants, dzz/dt and dzs/dt, respectively. This leads to
the equations

&1 = p(l+ Fy)(k + z3) — z1(1 + 23),
1
&g = ;[w1(1 + z3) — z2] + Fa, (37)

T3 = %(172 —z3) + F3.

F; is introduced in such a way that it directly gives
the fraction of the parameter p that is changed. Note
that the influence of F3 and F3 on the derivatives mod-
els added flows of the intermediate chemicals into the
process, while F; provides (possibly fast) switches of the
precursor concentration, which is an integrated flow rate.
Therefore large precursor flows would possibly be neces-
sary in a real experiment. Note also that the variables
and parameters are rescaled to be dimensionless, see [57].
As in the Lorenz system above, the equations can be
solved directly for the needed control forces if a specific
goal dynamics is given.

The parameter values of the controlled system (the
“experiment”) were set to (u,k,0,0) = (0.152, 70, 0.0045,
0.025) which leads to chaotic behavior. In the follow-
ing, system parameters o and é are determined by trying
to stabilize the system to a fixed point and by checking
deviations from the desired stationary state [55]. Fig-
ure 7(a) shows the chaotic attractor of Eq. (37) and
the approximate location of the controlled fixed point,
(z1,z%,z%) = (0.06,15.0,17.0), indicated by the arrow.
This point turns out to be controllable with quite small
control forces: For exactly matching model parameters,
we find F; = 0.0254, F, = 320.0, F3 = 80.0, and typical
values of 5 and 3 on the chaotic attractor are orders
of magnitude larger than F> and F3. A typical time be-
havior of the controlled system, represented by the con-
centration z;(t), is shown in Fig. 7(b): After switching
on the control forces (at t = 1.0) the system settles down
quite rapidly to a fixed point in phase space, and after
turning off control (at ¢ = 2.0), the chaotic movements
resume. The better the modeling parameters for calcu-
lating forces, the less the fixed point is shifted from its
intended position. In this case of fixed point control, we
can define a resonance or response function

R = (x! —2*)7, (38)

where z* denotes the desired fixed point and x7 is the fi-
nal steady state of the system after some time of control.
In order to maximize R, parameters of the model equa-
tion (and therefore the control forces) are varied over a
reasonable area. The result of simulation of this form of
spectroscopy is shown in Fig. 7(c), where R is plotted
vs. the reaction parameters & and § that had been used
in the model (& = p, K = k). A response maximum ap-
pears where the model parameters match the values of
the experiment. This method of resonance spectroscopy
is, of course, not restricted to originally chaotic systems.
However, we show here that it is applicable irrespective
of complicated phase space structures if an appropriate
model is available.

In an application, restrictions such as too few control
forces or limited control strength may exist. In the fol-
lowing example we show that even in these cases a model-
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(a)

FIG. 7. Control and generalized resonance spectroscopy of
the TVA system Eq. (37) (see text for parameter values).
(a) Chaotic attractor of the uncontrolled system. The arrow
indicates the position of the fixed point used for spectroscopy
by the control. (b) First variable z;(t) of the system driven to
the fixed point. Control is turned on at the dimensionless time
t = 1.0 and off at ¢t = 2.0. (c) Response function R [Eq. (38)]
vs modeling parameters § and &. Maximum response (best
match of observed and desired fixed point) is shown for the
true system parameters, § = 0.0045 and o = 0.025 (the value
of R actually tends to infinity for exact matching parameters
and is cut off in the plot).

based aproach can be advantageous and lead to entrained
behavior. Additionally, we simulate digital control (com-
pare Ref. [59]), i.e., the control forces are not given as
a continuous function, but as a staircase function (the
forces are held constant for a certain time interval At).
This case is met, e.g., in experiments where change of
control forces is restricted to some smallest time inter-
val. The applied control appears as a more or less good
approximation of the theoretical shape. One should ex-
pect difficulties for entrainment if At is not sufficiently
small.

Figure 8 shows a restricted control of the TVA sys-
tem Eq. (37). The first coordinate of controlled sys-
tem and goal, z;(t) and 2;(t), and the control force

T T T
0.6 (a) |
0.4
X1
0.2 |
O i\ /I
T T T
0.6 F (b) |

FIG. 8. Control of the TVA system Eq. (37) with restricted
control forces: Only the first (parametrically acting) force F;
is applied. The abscissa denotes the dimensionless time t.
Control is active from ¢ = 0.5 to ¢t = 1.5. The goal, a limit
cycle, is not attainable, but a similar movement sets in. (a)
First system variable z1(t). (b) First goal variable z;(t) (note
the larger amplitude). (c) Parametric control force F;. It has
been applied as a (“digital”) staircase function and limited
to values up to £0.3 (see text). (d) Enlargement of the time
scale of (c).

Fy(t) are plotted vs the same time axis in Figs. 8(a)-
8(c). As a goal trajectory we use a limit cycle that
is an attractor of the system for the parameter set
(¢, k,0,6) = (0.160,65,0.005,0.02), but which we have
accelerated in speed by a factor 1.66. The parameters
of the “experiment” have been set again to the values
(p, &,0,6) = (0.152,70,0.0045,0.025) for a chaotic state.
Control forces have been calculated with model parame-
ters (fi, %,&,60) = (0.154,65,0.005,0.02) and according to
Eq. (37), i.e., with the assumption that all three forces
exist. However, for control only the parametric force F}
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is used. Additionally, the values of F; are restricted to
a change of the parameter p of £30%, so the force is
bounded to the interval [—0.3, 0.3] (values are set onto the
boundaries where they would exceed them). The result-
ing shape of F; is given in Fig. 8(c) and, on an expanded
time scale, in Fig. 8(d). One recognizes the short time
intervals where the force is held constant (At = 0.0005).
Within some periods the force is in upper or lower satura-
tion. The control is applied from ¢t = 0.5 to t = 1.5, and
indeed the system settles down onto a limit cycle. Note
that this controlled limit cycle is not exactly the goal
trajectory for it has a significantly smaller amplitude. It
appears that this deviation is neither due to incomplete,
cut off, or discretized control forces, nor to inexact mod-
eling parameters, but has possibly some deeper reason.
We checked this example, and the exact goal turned out
to be unstable, even if all three forces were applied cor-
rectly. However, the system did not return to chaotic
behavior after leaving the unstable goal, but switched to
a different limit cycle of the same period and smaller am-
plitude, very similar to our imperfectly controlled system
(Fig. 8). Therefore our control forces introduced both an
unstable goal solution and a stable solution that is simi-
lar to the goal in certain aspects. A similar solution still
exists in the imperfectly controlled case. This is no ex-
ample of a near entrainment as described above, because
the dynamics is not just the distorted goal, and it can-
not be used for spectroscopic purposes. However, we still
have a far-entrained solution which removes chaos. This
phenomenon of controlled system behavior that does not
follow (near to) the goal, but nevertheless acts in a syn-
chronized manner, occurred for several parameters and
systems, and also for aperiodic goals. It might be a
more universal feature of parametrically controlled sys-
tems and should be compared to effects of other paramet-
ric perturbation methods. Referring to our TVA exam-
ple (Fig. 8), however, let us note that the model-based
character of the control force Fj is important. Several
attempts to entrain the system with more simple control
forces of the same frequency and the same maximum am-
plitude (such as sinusoidal or square wavelike signals) did
not work. Although the TVA behavior changed signifi-
cantly in these cases, chaos could not be suppressed.

V. SUMMARY AND OUTLOOK

We have shown that the idea of an extended model-
based entrainment control, including parametric control
forces, can successfully be applied to chaotic systems.
The method has been investigated for nonadditive con-
trol of discrete dynamics (logistic and Hénon map) and
continuous-time systems (Lorenz and TVA equations). A
generalization of the concept of convergent regions (FP-
convergent regions) has been introduced and proves to be
useful for determination of stable goal dynamics. Quan-
titative estimates for dynamical limitations of goals have
been given, while a strict treatment of the stability prob-
lem for a larger variety of goal dynamics remains a chal-

lenging and difficult task. Nevertheless, parametric en-
trainment control might open new possibilities, as control
of convergent regions of a system could be developed in
future work.

Moreover, we have demonstrated that generalized res-
onance spectroscopy as described in Ref. [55] can easily
be applied to parametrically controlled systems, both it-
erated maps and ODEs. This aspect includes the fact
that model-based parametric control forces may show a
certain amount of robustness against deviations of exper-
iment and model. Also, incomplete access and restricted
values of the forces are problems that do not necessarily
hinder control (in contrast, system dynamics can be more
sensitive to parametric disturbance than to, e.g., addi-
tive forcing, which might balance out the lack of con-
trol access in some cases). Furthermore, a model-based
derivation of (in this case parametric) control forces
should be superior to application of more simple peri-
odic system perturbations. In particular, harmonic forces
[32-36,41,42] reject many degrees of freedom of the con-
trol (higher modes) that might be useful [37-40,60]. The
exact relationship, however, of model-based parametric
entrainment control to former approaches, like the other
periodic perturbation methods cited, still has to be clar-
ified, as similar effects may appear for inexact forces and
unstable goals.

Due to experimental constraints, limitations in magni-
tude of control forces are often given which restrict the
goal dynamics that are accessible. In addition to these
“limited value” restrictions, the problem of solvability of
the control force equations (7) or (30) might occur in the
general case of nonadditive forces. In our examples of
parametric dependences this appeared as divergences of
control forces which were, however, isolated and could
be truncated without losing control. If the control in-
fluence is more complicated, this problem may become
more severe and may exclude many goals. Similar dif-
ficulties appear if too few control forces are available or
not all components of the system are affected: then a
suitable deformation of the system may not be possible
by the control. However, one could think of taking the
“best” reachable values of control forces by using some
optimization process. For example, a pseudoinverse of
the Jacobi matrix (20) could be generated using singular
value decomposition to “solve” Eq. (21) in a minimum
norm sense. Especially with parametric control, an in-
exact but approximate control might lead to a dynamics
similar or synchronized to that desired (compare the last
TVA example). The extension of this idea would be to re-
lax the demands on the goal dynamics and to exploit the
possibilities of the given control influence with respect to
less specific aims. In many cases, the exact goal trajec-
tory is not of really great importance, but other features
such as reduction of Lyapunov exponents or a change
of correlation functions are actually desired. This would
open up a whole area of new goal definitions, circumvent-
ing restrictions that might appear in the general case of
arbitrary control influence on nonlinear systems. Still; a
model-based approach using constrained, but optimized
(in some sense) control seems to be promising, but work
in this field has just started.
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